Characterization of xylanolytic enzymes in Clostridium cellulovorans: expression of xylanase activity dependent on growth substrates.
نویسندگان
چکیده
Xylanase activity of Clostridium cellulovorans, an anaerobic, mesophilic, cellulolytic bacterium, was characterized. Most of the activity was secreted into the growth medium when the bacterium was grown on xylan. Furthermore, when the extracellular material was separated into cellulosomal and noncellulosomal fractions, the activity was present in both fractions. Each of these fractions contained at least two major and three minor xylanase activities. In both fractions, the pattern of xylan hydrolysis products was almost identical based on thin-layer chromatography analysis. The major xylanase activities in both fractions were associated with proteins with molecular weights of about 57,000 and 47,000 according to zymogram analyses, and the minor xylanases had molecular weights ranging from 45,000 to 28,000. High alpha-arabinofuranosidase activity was detected exclusively in the noncellulosomal fraction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that cellulosomes derived from xylan-, cellobiose-, and cellulose-grown cultures had different subunit compositions. Also, when xylanase activity in the cellulosomes from the xylan-grown cultures was compared with that of cellobiose- and cellulose-grown cultures, the two major xylanases were dramatically increased in the presence of xylan. These results strongly indicated that C. cellulovorans is able to regulate the expression of xylanase activity and to vary the cellulosome composition depending on the growth substrate.
منابع مشابه
Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation.
The Clostridium cellulovorans xynA gene encodes the cellulosomal endo-1,4-beta-xylanase XynA, which consists of a family 11 glycoside hydrolase catalytic domain (CD), a dockerin domain, and a NodB domain. The recombinant acetyl xylan esterase (rNodB) encoded by the NodB domain exhibited broad substrate specificity and released acetate not only from acetylated xylan but also from other acetylate...
متن کاملDegradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA.
Clostridium cellulovorans, an anaerobic bacterium, degrades native substrates efficiently by producing an extracellular enzyme complex called the cellulosome. All cellulosomal enzyme subunits contain dockerin domains that can bind to hydrophobic domains termed cohesins which are repeated nine times in CbpA, the nonenzymatic scaffolding protein of C. cellulovorans cellulosomes. In this study, th...
متن کاملSynergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation.
Plant cell walls are comprised of cellulose and hemicellulose and other polymers that are intertwined, and this complex structure presents a barrier to degradation by pure cellulases or hemicellulases. In this study, we determined the synergistic effects on corn cell wall degradation by the action of cellulosomal xylanase XynA and cellulosomal cellulases from Clostridium cellulovorans. XynA min...
متن کاملDetermination of subunit composition of Clostridium cellulovorans cellulosomes that degrade plant cell walls.
Clostridium cellulovorans produces a cellulase enzyme complex (cellulosome). In this study, we isolated two plant cell wall-degrading cellulosomal fractions from culture supernatant of C. cellulovorans and determined their subunit compositions and enzymatic activities. One of the cellulosomal fractions showed fourfold-higher plant cell wall-degrading activity than the other. Both cellulosomal f...
متن کاملSynergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates
The synergistic interaction between various hemi/cellulolytic enzymes has become more important in order to achieve effective and optimal degradation of complex lignocellulose substrates for biofuel production. This study investigated the synergistic effect of three enzymes endoglucanase (EngE), mannanase (ManA) and xylanase (XynA) on the degradation of corn stalk, grass, and pineapple fruit pu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 183 24 شماره
صفحات -
تاریخ انتشار 2001